Initial entry of IRAP into the insulin-responsive storage compartment occurs prior to basal or insulin-stimulated plasma membrane recycling.

نویسندگان

  • Gang Liu
  • June Chunqiu Hou
  • Robert T Watson
  • Jeffrey E Pessin
چکیده

To examine the acquisition of insulin sensitivity after the initial biosynthesis of the insulin-responsive aminopeptidase (IRAP), 3T3-L1 adipocytes were transfected with an enhanced green fluorescent protein-IRAP (EGFP-IRAP) fusion protein. In the absence of insulin, IRAP was rapidly localized (1-3 h) to secretory membranes and retained in these intracellular membrane compartments with little accumulation at the plasma membrane. However, insulin was unable to induce translocation to the plasma membrane until 6-9 h after biosynthesis. This was in marked contrast to another type II membrane protein (syntaxin 3) that rapidly defaulted to the plasma membrane 3 h after expression. In parallel with the time-dependent acquisition of insulin responsiveness, the newly synthesized IRAP protein converted from a brefeldin A-sensitive to a brefeldin A-insensitive state. The initial trafficking of IRAP to the insulin-responsive compartment was independent of plasma membrane endocytosis, as expression of a dominant-interfering dynamin mutant (Dyn/K44A) inhibited transferrin receptor endocytosis but had no effect on the insulin-stimulated translocation of the newly synthesized IRAP protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recycling of IRAP from the plasma membrane back to the insulin-responsive compartment requires the Q-SNARE syntaxin 6 but not the GGA clathrin adaptors.

Insulin recruits two transmembrane proteins, GLUT4 and IRAP, to the plasma membrane of muscle cells and adipocytes. The subcellular trafficking and localization of GLUT4, and to a lesser extent IRAP, have been intensely studied, yet the molecular mechanisms responsible for their insulin-responsive compartmentalization remain unknown. Herein we have investigated the endocytosis and recycling of ...

متن کامل

The Glucose Transporter 4 FQQI Motif Is Necessary for Akt Substrate of 160-Kilodalton-Dependent Plasma Membrane Translocation But Not Golgi- Localized !-Ear-Containing Arf-Binding Protein- Dependent Entry into the Insulin-Responsive Storage Compartment

Newly synthesized glucose transporter 4 (GLUT4) enters into the insulin-responsive storage compartment in a process that is Golgi-localized !-earcontaining Arf-binding protein (GGA) dependent, whereas insulin-stimulated translocation is regulated by Akt substrate of 160 kDa (AS160). In the present study, using a variety of GLUT4/GLUT1 chimeras, we have analyzed the specific motifs of GLUT4 that...

متن کامل

Regulation of insulin-responsive aminopeptidase expression and targeting in the insulin-responsive vesicle compartment of glucose transporter isoform 4-deficient cardiomyocytes.

In adipocytes and cardiac or skeletal muscle, glucose transporter isoform 4 (GLUT4) is targeted to insulin-responsive intracellular membrane vesicles (IRVs) that contain several membrane proteins, including insulin-responsive aminopeptidase (IRAP) that completely colocalizes with GLUT4 in basal and insulin-treated cells. Cardiac GLUT4 content is reduced by 65-85% in IRAP knockout mice, suggesti...

متن کامل

Insulin-stimulated exocytosis of GLUT4 is enhanced by IRAP and its partner tankyrase.

The glucose transporter GLUT4 and the aminopeptidase IRAP (insulin-responsive aminopeptidase) are the major cargo proteins of GSVs (GLUT4 storage vesicles) in adipocytes and myocytes. In the basal state, most GSVs are sequestered in perinuclear and other cytosolic compartments. Following insulin stimulation, GSVs undergo exocytic translocation to insert GLUT4 and IRAP into the plasma membrane. ...

متن کامل

Increased intracellular sequestration of the insulin-regulated aminopeptidase upon differentiation of 3T3-L1 cells.

In fat and muscle cells, the glucose transporter GLUT4 is sequestered in an intracellular compartment under basal conditions and redistributes markedly to the plasma membrane in response to insulin. Recently, we characterized a membrane aminopeptidase, designated IRAP (insulin-regulated aminopeptidase), that colocalizes with intracellular GLUT4 and similarly redistributes markedly to the plasma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 289 5  شماره 

صفحات  -

تاریخ انتشار 2005